#### Abstract

A Carnot type engine with a changing phase during the heating and the cooling is modeled with its thermal contact with the heat source. In a first optimization, the optimal high temperature of the cycle is determined to maximize the power output. The temperature and the mass flow rate of the heat source are given. This does not take into account the converter internal fluid and its mass flow rate. It is an exogenous optimization of the converter. In a second optimization, the endogenous optimization, the isothermal heating corresponds only to the vaporization of the selected fluid. The maximization of the power output gives the optimal vaporization temperature of the cycled fluid. Using these two optima allows connecting the temperature of the heat source to the working fluid used. For a given temperature level, mass flow rate and composition of the waste heat to recover, an optimal fluid and its temperature of vaporization are deduced. The optimal conditions size also the internal mass flow rate and the compression ratio (pump size). The optimum corresponds to the maximum of the power output and must be combined with the environmental fluid impact and the technological constraints.